

lck.common

This library consists of various simple common routines and language constructs
that are so useful they ten to be rewritten in every subsequent project I’m
working on. Each function, decorator or module on its own is too simple to
dedicate an entire PyPI package for it. Together however, this library
represents a Swiss army knife for everyday needs (YMMV). Among the things you
might find inside:

	robust memoization

	some less obvious collections (e.g. orderedset)

	a @synchronized decorator (with threading or lockfile backends)

	some controversial language enhancements like the Null object

	converter from ElementTree instances to dicts

	file finder (searching locations commonly used for storing app data)

The latest version can be installed via PyPI [http://pypi.python.org/pypi/lck.common/]:

$ pip install lck.common

or:

$ easy_install lck.common

The source code repository [http://github.com/LangaCore/kitpy] and
issue tracker [http://github.com/LangaCore/kitpy/issues] are
maintained on GitHub [http://github.com/LangaCore/kitpy].

For the curious, lck stands for LangaCore Kit. LangaCore is a one man
software development shop of mine.

Note: lck.common requires Python 2.7 because all of its code is using
the so-called four futures (absolute_imports, division, print_function
and unicode_literals). One of the virtues in the creation of this library
is to make the code beautiful. These switches give a useful transitional
state between the old Python 2.x and the new Python 3.x. You should use them as
well.

Change Log

0.4.5

	fixed an uncommon bug in memoization where an exception in the memoized
function could leave stale keys in the cache

0.4.4

	lck.git introduced with a get_version routine

	decode_entities added to lck.xml

0.4.3

	lck.lang.Null introduced, see Null Object pattern [http://en.wikipedia.org/wiki/Null_Object_pattern]

	lck.lang.unset is now a Null instance

	lck.xml introduced with a etree_to_dict routine

	lck.config has been removed, use the configparser backport [http://pypi.python.org/pypi/configparser]

0.4.2

	lck.crypto introduced with a couple of thin wrappers over PyCrypto

	lck.math introduced starting with Elo rating calculation routine.

0.4.1

	lck.lang.unset is now also False and len(unset) is zero

0.4.0

	migrated to the lck namespace from langacore.kit

	migrated licensing from GPL 3 to MIT

	bumped the trove from alpha status to beta, the code is in production for over
a year now

Ancient history

	No proper change log was kept before 0.4.0

This documentation

	Overview
	Decorator modules

	lck.crypto

	lck.files

	lck.git

	lck.lang

	lck.math

	lck.xml

	License

	TODO
	Code

	Docs

	Community

Indices and tables

	Index

	Module Index

	Search Page

Overview

For now the library is still quite small. Functionality gets added or refined as
needed.

	Decorator modules
	@synchronized

	@memoize

	Details

	lck.crypto
	lck.crypto

	Factory functions

	Classes

	lck.files
	lck.files

	Functions

	lck.git
	lck.git

	Functions

	lck.lang
	lck.lang

	lck.math
	lck.math

	lck.math.elo_rating

	lck.xml
	lck.xml

Decorator modules

@synchronized

This decorator mimics the behaviour of the Java keyword, enabling users to treat whole
functions or methods as atomic. The most simple use case involves just decorating a function:

from lck.concurrency import synchronized

@synchronized
def func():
 pass

After decoration, all calls to the function are synchronized with a reentrant threading lock
so that no matter how many threads invoke the function at the same time, all calls are
serialized and in effect are run one after another. The default lock is reentrant so it’s
okay for a synchronized function to be recursive.

In case where a whole group of functions should be serialized, the user can explicitly provide
a lock object to the decorator:

from threading import Lock
from lck.concurrency import synchronized

LOCK=Lock()

@synchronized(lock=LOCK)
def func1():
 pass

@synchronized(lock=LOCK)
def func2():
 pass

Sharing a lock means that at any time at most one of the functions in the group is called,
no matter how many threads are running. It’s also worth noting that excplicitly providing
a lock enables the user to choose another lock implementation. In the above example a simple
non-reentrant lock is used, in effect the performance is higher than in the reentrant case,
but the functions sharing the same lock cannot call themselves.

If the application is run in a multiprocess environment, locks based on threading are not
the answer. In that case the decorator can be fed with a file path instead of a lock object:

from lck.concurrency import synchronized

@synchronized(path='/tmp/example.lock')
def func():
 pass

In that case upon every function call a lock file will be created on the given path to ensure
serial execution across multiple processes. The implementation uses Skip Montanaro’s
excellent lockfile [http://pypi.python.org/pypi/lockfile] library. It is using atomic
operations available on a given platform to ensure correctness. In case of POSIX systems,
hard links are created. On Windows, directories are made.

@memoize

This decorator enhances performance by storing the outcome of the decorated function
given a specific set of arguments. Across the application the function is called as it
normally would but in fact, only the first call with a concrete set of arguments is calculated.
All subsequent calls with the same arguments return the stored value calculated at first.

This is particularly a win for resource or time consuming functions that are called
multiple times with the same arguments.

The most typical use case for this decorator will be simply:

from time import sleep
from lck.cache import memoize

@memoize
def expensive_func(arg):
 sleep(10)
 print arg

expensive_func('Hello') # 10 seconds before we see 'Hello'
expensive_func('Hello') # now 'Hello' appears instantly
expensive_func('World') # 10 seconds before we see 'World'
expensive_func('World') # now 'World' appears instantly

The decorator is configurable so that the user can specify how long the outcome should be
cached, or how many different sets of arguments should be stored in the cache:

from lck.cache import memoize

@memoize(update_interval=15)
def recalculation_every_15_seconds():
 pass

@memoize(max_size=2)
def only_two_last_used_args_will_be_cached(arg):
 pass

Details

For more detailed view on the decorators, see the documentation below.

	cache.memoization
	lck.cache.memoization

	concurrency.synchronization
	lck.concurrency.synchronization

lck.cache.memoization

lck.cache.memoization

Implements a reusable memoization decorator. It is using a finite-size cache
with pickled arguments as keys, to hold the outcome of a specific function
call. When the decorated function is called again with the same arguments,
the outcome is fetched from the cache instead of being recalculated again.

The cache used maintains a list of Least Recently Used keys so that in
case of overflow only the seemingly least important ones get deleted.

Note

Instead of importing the whole structure, a recommended shortcut is available.
Use from lck.cache import memoize.

Functions

	
memoize(func=None, update_interval=300, max_size=256, skip_first=False, fast_updates=True)

	Memoization decorator.

	Parameters:	
	update_interval – time in seconds after which the actual function
will be called again

	max_size – maximum buffer count for distinct memoize hashes for
the function. Can be set to 0 or None. Be aware of
the possibly inordinate memory usage in that case

	skip_first – False by default; if True, the first
argument to the actual function won’t be added to
the memoize hash

	fast_updates – if True (the default), an optimized LRU
algorithm is used where all function invocations
except every Nth (where N == sys.maxint) are much
faster but cache overflow is costly. In general,
having fast_updates set to True gives
a 15% performance boost when there are no cache
misses (the possible number of used argument
combinations for the decorated function is smaller
than the value of max_size). If cache misses
exceed 50%, you might want to increase
max_size. If that’s not feasible, memoization
with fast_updates set to False will
perform faster.

lck.concurrency.synchronization

lck.concurrency.synchronization

Implements a reusable Java-like synchronization decorator.
It is using threading locks or filesystem-based locks to synchronize
subsequent calls of the specified functions. The former kind of
lock is reentrant, the latter is not.

For filesystem-based locks the module is using Skip Montanaro’s
lockfile [http://pypi.python.org/pypi/lockfile] library,
compatible with Windows and POSIX environments.

Note

Instead of importing the whole structure, a recommended shortcut is available.
Use from lck.concurrency import synchronized.

Functions

	
synchronized(func=None, lock=None, path=None)

	Synchronization decorator.

	Parameters:	
	lock – the user can specify a concrete lock object to be used
with this specific synchronization decorator. This is
useful when a group of functions should be synchronized
together.

	path – instead of using threading-based locking, file-based
locks may be used instead. Beware, these are radically
less performant than threading locks.

lck.crypto

lck.crypto

High-level cryptographic routines.

Factory functions

These are convenience routines that create Cipher instances with the
correct algorithm implementation plugged in.

	
aes([key, path, create]) → Cipher instance

	Factory creating a cipher using the AES algorithm. Arguments have the same meaning as in the raw Cipher class.

	
blowfish([key, path, create]) → Cipher instance

	Factory creating a cipher using the Blowfish algorithm. Arguments have the same meaning as in the raw Cipher class.

	
cast([key, path, create]) → Cipher instance

	Factory creating a cipher using the CAST algorithm. Arguments have the same meaning as in the raw Cipher class.

	
des([key, path, create]) → Cipher instance

	Factory creating a cipher using the DES algorithm. Arguments have the same meaning as in the raw Cipher class.

	
des3([key, path, create]) → Cipher instance

	Factory creating a cipher using the DES3 algorithm. Arguments have the same meaning as in the raw Cipher class.

Classes

lck.files

lck.files

Filesystem based utilities.

Functions

	
finder(explicit_path, envvar=None, multiple_allowed=False)

	Finds a specific file using explicitly given path (or given by an
environment variable). The algorithm is as follows: for every given
path from the args (explicitly given, environment variable, fallback)
check whether the file exists. If it doesn’t and the path is not
absolute, search the working directory, its parent directory and all
child directories, the current user’s home directory and /etc.

	Parameters:	
	explicit_path – path explicitly given by the user, can be a single
entry or a sequence

	envvar – name of the environment variable where to look for the
path

	fallback – name of the file to check if everything else fails

	multiple_allowed – False by default. If True, the returned type is
a tuple with potentially many entries.

	Returns:	the real absolute path to the file. Raises IOError if no found.

	..note::

	Works only on POSIX systems.

lck.git

lck.git

Helpers for git repositories.

Functions

	
get_version(module) → u'git-shortSHA1 (date & time of last commit)'

	Returns a short, nicely formatted tag that can be used for versioning
purposes on websites or command-line tools. The version given is based
on the last commit on the repository the specified module object is
a part of.

lck.lang

lck.lang

Holds various constructs which extend or alter behaviour of the core
language.

	
Null

	

	
unset

	

	
class NullDict

	

	
class NullList

	

	
nullify(obj)

	

lck.math

lck.math

Various math related utilities.

lck.math.elo_rating

	
rate([winner_rank, loser_rank, penalize_loser]) -> (new_winner_rank, new_loser_rank)

	Computes the new ratings after a game. winner_rank and loser_rank must
be integers, default is 1000. If penalize_loser is True
(the default), points added to the winner are subtracted from the loser.

lck.xml

lck.xml

Various XML-related utilities.

	
decode_entities(string[, encoding]) → string_with_decoded_entities

	Decodes XML entities from the given string. Supports both Unicode and
bytestring arguments.

Note: when using a bytestring string argument, a bytestring will be
returned. In that case however, encoding has to be specified, otherwise
an UnicodeDecodeError will be raised. This is because we have to support
the &#xxxx; entity which enables people to use any Unicode codepoint.

	
etree_to_dict(element, [namespace]) -> ("tag_name", dict_with_children)

	element must be a valid ElementTree element. namespace is optional,
must be given in Clark notation, e.g. “{ns_uri}”.

License

Copyright (C) 2010, 2011 by Łukasz Langa

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the Software), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

TODO

Things that would be great to have but I haven’t gotten to do them yet.

Code

	Migrating to configparser and throwing out FunkyConfigParser would do much
good

	There are not enough unit tests

	No examples in the code

Docs

	Bits documented only by means of API, no proper introduction:
	forms

	models

	Bits undocumented:
	orderedset

	score

	tags

	There is no clear roadmap of where this project is heading

	No FAQ, Tutorial

Community

	There is no community

	Some publicity would be helpful

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lck	

 	
 	
 lck.cache.memoization	

 	
 	
 lck.concurrency.synchronization	

 	
 	
 lck.crypto	

 	
 	
 lck.files	

 	
 	
 lck.git	

 	
 	
 lck.lang	

 	
 	
 lck.math	

 	
 	
 lck.xml	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | M
 | N
 | R
 | S
 | U

A

 	
 	aes() (in module lck.crypto)

B

 	
 	blowfish() (in module lck.crypto)

C

 	
 	cast() (in module lck.crypto)

D

 	
 	decode_entities() (in module lck.xml)

 	
 	des() (in module lck.crypto)

 	des3() (in module lck.crypto)

E

 	
 	etree_to_dict() (in module lck.xml)

F

 	
 	finder() (in module lck.files)

G

 	
 	get_version() (in module lck.git)

L

 	
 	lck.cache.memoization (module)

 	lck.concurrency.synchronization (module)

 	lck.crypto (module)

 	lck.files (module)

 	
 	lck.git (module)

 	lck.lang (module)

 	lck.math (module)

 	lck.xml (module)

M

 	
 	memoize() (in module lck.cache.memoization)

N

 	
 	Null (in module lck.lang)

 	NullDict (class in lck.lang)

 	
 	nullify() (in module lck.lang)

 	NullList (class in lck.lang)

R

 	
 	rate() (in module lck.math.elo_rating)

S

 	
 	synchronized() (in module lck.concurrency.synchronization)

U

 	
 	unset (in module lck.lang)

How To Install

Install in Sphinx

Copy this directory into the sphinx/templates directory where Shpinx is installed. For example, a standard install of sphinx on Mac OS X is at /Library/Python/2.6/site-packages/Sphinx-0.6.3-py2.6.egg/

Install Somewhere Else

If you want to install this theme somewhere else, you will have to modify the conf.py file.

templates_path = ['/absolute/path/to/dir/','relative/path/']

Install Directly in Your Documentation

If you want to include the files directly in the documentation, so another person can build your documentation, it is easy.

	Copy over everything in the static directory into the _static directory of your documentation’s source folder.

	Copy the layout.html file into the _templates directory of your documentation’s source folder.

	Alter your conf.py

html_theme = 'basic'

instead of 'ADCtheme'.

Making Sphinx Use the Theme

If you aren’t installing the files directly into your documentation, edit the conf.py file and make the following setting:

html_theme = 'ADCtheme'

Screen Shots

[image: http://github.com/coordt/ADCtheme/raw/master/static/scrn1.png]
[image: http://github.com/coordt/ADCtheme/raw/master/static/scrn2.png]

To Do

	Gotta get the javascript working so the Table of Contents is hide-able.

	Probably lots of css cleanup.

 _static/comment-close.png

_static/up.png

_static/minus.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		lck.common

 		Overview

 		Decorator modules

 		@synchronized

 		@memoize

 		Details

 		lck.crypto

 		lck.crypto

 		Factory functions

 		Classes

 		lck.files

 		lck.files

 		Functions

 		lck.git

 		lck.git

 		Functions

 		lck.lang

 		lck.lang

 		lck.math

 		lck.math

 		lck.math.elo_rating

 		lck.xml

 		lck.xml

 		License

 		TODO

 		Code

 		Docs

 		Community

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

